To understand the capabilities of the code, it is useful to browse through the publications that have used it, in one form or another.

  1. Hellman, O., Abrikosov, I. A. & Simak, S. I. Lattice dynamics of anharmonic solids from first principles. Phys. Rev. B 84, 180301 (2011).
  2. Kim, D. S. et al. Nuclear quantum effect with pure anharmonicity and the anomalous thermal expansion of silicon. Proc. Natl. Acad. Sci. 201707745 (2018).
  3. Shulumba, N., Hellman, O. & Minnich, A. J. Intrinsic localized mode and low thermal conductivity of PbSe. Phys. Rev. B 95, 14302 (2017).
  4. Mauger, L. et al. Phonons and elasticity of cementite through the Curie temperature. Phys. Rev. B 95, 24308 (2017).
  5. Shulumba, N., Hellman, O. & Minnich, A. J. Lattice Thermal Conductivity of Polyethylene Molecular Crystals from First-Principles Including Nuclear Quantum Effects. Phys. Rev. Lett. 119, 185901 (2017).
  6. Yang, F. C. et al. Thermally Driven Electronic Topological Transition in FeTi. Phys. Rev. Lett. 117, 76402 (2016).
  7. Björkman, T. et al. Vibrational Properties of a Two-Dimensional Silica Kagome Lattice. ACS Nano 10, 10929–10935 (2016).
  8. Mozafari, E., Shulumba, N., Steneteg, P., Alling, B. & Abrikosov, I. A. Finite-temperature elastic constants of paramagnetic materials within the disordered local moment picture from ab initio molecular dynamics calculations. Phys. Rev. B 94, 54111 (2016).
  9. Shulumba, N. et al. Lattice Vibrations Change the Solid Solubility of an Alloy at High Temperatures. Phys. Rev. Lett. 117, 205502 (2016).
  10. Dewaele, A. et al. High pressure-temperature phase diagram and equation of state of titanium. Phys. Rev. B 91, 134108 (2015).
  11. Isaeva, L., Hellman, O., Lashley, J. C., Abrikosov, I. A. & Eriksson, O. Dynamic Stabilization of Cubic AuZn. Mater. Today Proc. 2, S569–S572 (2015).
  12. Shulumba, N. et al. Temperature-dependent elastic properties of Ti1-xAlxN alloys. Appl. Phys. Lett. 107, 1–4 (2015).
  13. Mei, A. B. et al. Reflection thermal diffuse x-ray scattering for quantitative determination of phonon dispersion relations. Phys. Rev. B 92, 174301 (2015).
  14. Lan, T. et al. Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO2. Phys. Rev. B 92, 54304 (2015).
  15. Romero, A. H., Gross, E. K. U., Verstraete, M. J. & Hellman, O. Thermal conductivity in PbTe from first principles. Phys. Rev. B 91, 214310 (2015).
  16. Abrikosov, I. A. et al. Theoretical description of pressure-induced phase transitions: a case study of Ti-V alloys. High Press. Res. 35, 42–48 (2015).
  17. Mei, A. B. et al. Dynamic and structural stability of cubic vanadium nitride. Phys. Rev. B 91, 54101 (2015).
  18. Bouchet, J. & Bottin, F. Thermal evolution of vibrational properties of alpha-U. Phys. Rev. B 92, 174108 (2015).
  19. Budai, J. D. et al. Metallization of vanadium dioxide driven by large phonon entropy. Nature 515, 535–539 (2014).
  20. Miranda, A. L., Xu, B., Hellman, O., Romero, A. H. & Verstraete, M. J. Ab initio calculation of the thermal conductivity of indium antimonide. Semicond. Sci. Technol. 29, 124002 (2014).
  21. Hellman, O. & Broido, D. A. Phonon thermal transport in Bi2Te3 from first principles. Phys. Rev. B 90, 134309 (2014).
  22. Shulumba, N. et al. Vibrational free energy and phase stability of paramagnetic and antiferromagnetic CrN from ab initio molecular dynamics. Phys. Rev. B 89, 174108 (2014).
  23. Li, C. W. et al. Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics. Phys. Rev. Lett. 112, 175501 (2014).
  24. Hellman, O., Steneteg, P., Abrikosov, I. A. & Simak, S. I. Temperature dependent effective potential method for accurate free energy calculations of solids. Phys. Rev. B 87, 104111 (2013).
  25. Steneteg, P. et al. Temperature dependence of TiN elastic constants from ab initio molecular dynamics simulations. Phys. Rev. B 87, 94114 (2013).
  26. Hellman, O. & Abrikosov, I. A. Temperature-dependent effective third-order interatomic force constants from first principles. Phys. Rev. B 88, 144301 (2013).